SURVEY OF
THERMONUCLEAR-REACTOR PARAMETERS

P. J. Persiani, W. C. Lipinski, and A. J. Hatch

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U.S. ATOMIC ENERGY COMMISSION
under Contract W-31-109-Eng-38

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy Commission, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin

NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy \$3.00; Microfiche \$0.95

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439

SURVEY OF THERMONUCLEAR-REACTOR PARAMETERS

by

P. J. Persiani Applied Physics Division

W. C. Lipinski Reactor Analysis and Safety Division

> A. J. Hatch Physics Division

October 1972

TABLE OF CONTENTS

		Page
ABS	STRACT	5
I.	INTRODUCTION	5
II.	FORMAT AND TABLE STRUCTURE	6
III.	POWER-BALANCE PARAMETERS	7
IV.	REACTOR PARAMETERS FOR CLOSED SYSTEMS: TABLE I.	8
	A. Stellarators	8
	B. Tokamaks	9
	C. Toroidal Machines	14
	D. Toroidal θ -pinch (Scyllac)	15
V.	REACTOR PARAMETERS FOR OPEN-ENDED SYSTEMS: TABLE II	16
	A. Mirror Machines	16
	B. Astron	21
	C. Linear θ -pinch (Scylla)	21
VI.	REMARKS	22
DEI	FEDENCES	2.3

4

NEW TOTAL SECTION ASSESSMENT

100.00

SURVEY OF THERMONUCLEAR-REACTOR PARAMETERS

by

P. J. Persiani, W. C. Lipinski, and A. J. Hatch

ABSTRACT

This preliminary survey makes available for ready reference some of the important thermonuclear-reactor parameters generated by the variety of concept studies reported in the open literature. Many of the more than 25 studies are essentially partial design concepts, emphasizing specific problem areas involved in developing a fusion power reactor. The term "design" in this report will be applied to all the sets of parameters cited, even though in many cases only a few self-consistent parameters are used to illustrate a limited aspect of the overall design problem. The composite tabulation of these parameters does allow a measure of convenience in scoping the overall effort that has been applied to the general area of feasibility and development of fusion reactors (as distinguished from plasma problems).

The parameters are presented in such a way as to compare the reactor types and to identify major subsystems that have as yet received only minimal attention. Although a comparison of certain selected parameters is indeed an objective of this compilation, an evaluation of each of the systems and/or subsystems is beyond the scope of this report.

It is also intended that the compilation will serve as background material for a subsequent phase of developing a coordinated overall reactor systems-design study. In this manner, an overall systems study would bring into better perspective the many conflicting design constraints and interface problems.

I. INTRODUCTION

Engineering design studies in programmatic planning for the timely development of large complex systems, such as a fusion-reactor plant, are necessary in order to identify and evaluate major problem areas, various technical approaches, and potential methods of solution, and to establish relative priorities in research and development. As an aid in the development

of such an overall CTR (controlled thermonuclear research) program plan, the various fusion-reactor concept studies reported in the literature have been surveyed. The purpose of the survey is to make available for ready reference some of the important thermonuclear-reactor parameters generated in the design studies. Many of the more than 25 studies are essentially partial design concepts, emphasizing specific problem areas involved in developing a fusion power reactor. The term "design" in this report will be applied to all the sets of parameters cited, even though in many cases only a few self-consistent parameters are used to illustrate a limited aspect of the overall design problem. The composite tabulation of these parameters allows a measure of convenience in scoping the overall effort that has been applied to the general area of feasibility and development of fusion reactors (as distinguished from plasma problems).

The parameters are presented in such a way as to compare the reactor types and to identify major subsystems that have as yet received only minimal attention. Although a comparison of certain selected parameters is indeed an objective of this compilation, an evaluation of the systems and/or subsystems is beyond the scope of this report.

It is also intended that the compilation will serve as background material for a subsequent phase of developing a coordinated overall reactor systems-design study. In this manner, an overall systems study would bring into better perspective the many conflicting design constraints and interface problems.

II. FORMAT AND TABLE STRUCTURE

The basis used for the selection of material to be included in the tabulation is that the design study be published in open literature and that the partial or subsystem concepts relate to a specific type of fusion reactor.

An attempt is made to present the information for all types of systems in as uniform a manner as is possible. The table is structured into 10 sections which essentially cover the major subsystems of a complete system design. The sections listed are:

- 1. Power
- 2. Energy conversion
- 3. Reactor dimensions
- 4. Plasma parameters
- 5. Magnet system
- 6. Blanket system
- 7. Primary coolant system
- 8. Direct-conversion system
- 9. Fueling system
- 10. Fuel recovery and by-product removal system

With some modifications, the above sections were found to be consistent in categorizing the basically different fusion-reactor types. The

first three sections contain the general descriptive information on the main features of a power-reactor system. The next two sections list the more specific parameters describing the plasma operating conditions and the magnet system needed to attain these conditions. The sections on the Blanket, Primary Coolant, and Direct-conversion Systems list the parameters relating to the power-conversion techniques. The Blanket and Primary Coolant Systems are part of the thermal power-conversion system; the Direct-conversion System includes direct electrical power generation from escaping charged particles and/or from charged particle motion against magnetic fields. The Fueling System section includes parameters relating to the injection subsystem as well as the fuel-cycle balance. The final section, the Fuel Recovery and By-Product Removal System, lists data pertinent to the vacuum-systems throughput and to fuel production.

The compilation is presented in two tables. Table I lists the specifications relating to the closed systems: stellarators, tokamaks, toroidal machines, and $\theta\text{-pinch}$. The stellarators and tokamaks are low- β machines ($\beta < 10\%$) and are listed next to each other in the left-hand section of the table. The generally medium- β (10% < $\beta < 90\%$) toroidal machines are combined, and the high- β ($\beta > 90\%$) $\theta\text{-pinch}$ machine completes the table of closed-system reactors.

Table II lists the parameters associated with the open-ended systems: mirrors, astrons, θ -pinch, continuous-flow pinch, and long-cusp machines. In a similar grouping as in Table I, the generally low- β mirror and astron machines are listed on the left-hand section of the table, with the high- β machines completing Table II.

III. POWER-BALANCE PARAMETERS

In establishing the compilation for comparison studies, we found that the two important power-balance parameters, (1) Q (ratio of output to input power), and (2) ϵ (fractional circulating power), were defined differently in several studies, even within a class of reactor systems. Referring to the power-flow diagram (Fig. 1), the definition adopted for this survey is that the Q factor of a fusion power reactor, independent of subsystems, be defined as the ratio of the total reactor power output P_0 (across interface B) to the total power input P_i (across interface A),

$$Q = \frac{P_0}{P_i} = \frac{P_f + P_i}{P_i},$$
 (1)

where P_f is the fusion power generated in the power-source subsystem, and P_i is the power input to the power-source subsystem.

The input power to the power-source subsystem of a fusion reactor is the product of the overall plasma-preparation efficiency \mathbb{N}_i and the circulating power P_{C} into the plasma-preparation subsystem. The circulating power is the difference between P_{G} , the gross electrical power output from the power-conversion subsystem (across interface C), and P_{e} , the net electrical power output for distribution,

$$P_{c} = P_{g} - P_{e}. \tag{2}$$

The fractional circulating power & is defined as

$$\varepsilon = \frac{P_c}{P_g}.$$
 (3)

The definitions of Q and ε as suggested above and in Ref. 1 are most general and are applicable to complex systems involving a combination of thermal and direct power-conversion techniques. On this basis, the Q values and ε can provide a measure of performance for the comparison of fundamentally different approaches to a fusion-power-reactor system (closed, open-ended, or fusion by laser ignition). Since not all studies made available the assumed injection efficiency η_i , the compilation was made for a slightly altered but related quantity $Q' = \eta_i Q$.

IV. REACTOR PARAMETERS FOR CLOSED SYSTEMS: TABLE I

A. Stellarators

1. The first preliminary design of a practical fusion reactor was carried out in 1954 by Spitzer $\underline{\text{et}}$ $\underline{\text{al.}}^2$ Of all the papers reviewed for the current survey, this early effort was found to be the most complete design study of a fusion reactor.

The primary purposes of the study by Spitzer et al. were to explore problems associated with full-scale power systems and to identify those areas requiring further research and development. Their preliminary design approach was based on two assumptions: (a) Confinement of charged particles would be accomplished by magnetic fields, and (b) a fuel mixture of 50% deuterium and 50% tritium would be most practical because of the high D-T reaction cross-section values.

Spitzer et al. considered three net power-producing operating conditions with maximum values of the confining magnetic field strength, B, equal to 50, 75, and 100 kG. The lower limit was based on the consideration that magnetic fields less than 50 kG would yield an unfavorable power balance, the Q' of the 50-kG system being approximately 6. The upper limit of 100 kG, which yielded a Q' value of 23, was based on the consideration that larger fields would involve severe problems of structural strength and heat transfer. In the present survey we cite their intermediate case of the 75-kG system.

The thoroughness of this design is evident from the fact that design figures are obtained for nearly every category included in the table. No other design approaches it in this respect.

Gibson³ presents permissible parameters for economic closedsystem tokamak and stellarator reactors. Theoretical estimates are given for the maximum beta for which toroidal equilibria can exist. The restrictions on the parameters of a net-power-producing reactor are examined by considering the actual average ratio of plasma to magnetic pressure achieved in a reactor system as a departure from the maximum theoretical equilibrium estimates. Parametric curves are presented for tokamaks and stellarators showing total reactor power and aspect ratio as a function of a normalized \$ for several field strengths. Gibson summarizes the important parameters for selected total power ratings for two tokamaks and three stellarators. The medium-power-rating case, 3200 MWe for the stellarator system is presented in column 2, Table I. The higher-power system, 15,000 MWe, uses a maximum field strength of 200 kG and the same average β = 0.03 as given for the medium-power case. The low-power case, 1900 MWe, relates to a maximum field at the windings of 100 kG and to an average $\beta = 0.10$. The corresponding calculated power fluxes at the wall are 13 and 8 MW/m² for the high- and low-power systems, respectively.

B. Tokamaks

1. Golovin et al.⁴ investigate some of the necessary parameters for a net power-producing fusion reactor of the tokamak type. The mode of operation is pulsing the magnetic field to an amplitude of 50 kG in order to maintain a plasma current over a 100-sec pulse. The investigators confine their study to the plasma-related design criteria, adopting a maximum

TABLE I REACTOR PARAMETERS FOR CLOSED SYSTEMS

			Stella	rators		Toko	maks				Tor	oidal Machines			θ-Pinch
			Spitzer	1	Golovin	Carruther	s <u>et al.</u> 5, 6	Butt ⁸	1	9	Förster &	Butt ⁸	James, Newt	on, Bodin ^{11,12}	Burnett
			et al.2	Gibson ³	et al.4	a-Heating	Injection	Simple Model	Gibson ³	Mills ⁹	Schneider ¹⁰	Simple Model	Resistive b	Supercond	& Ellis ¹³
POWER Reactor Output Power Gross Electrical Power Net Electrical Power Station Efficiency Fractional Circulating PowerReactor Output Power		-P _e)/P _g	17300 6000 4680 0.270 ^a 0.22 ^a	3200	5000	5000 2300° 2070 0.42 ~0.10°	5000 2300 ^a 2070 0.42 ~0.10	6000	1650	59IO 20IO 1950 0.33 0.03	5000 ^c 2318 0.468	6000 <0.10	2750 Pk. 1170 803 0.292 0.313	7500 Pk. 3220 2850 0.380 0.115	3380 1350
0'= Reactor Output Power Circulating Power Fusion Pulse Power Pulse Width Pulse Period	Pp tw tp	(Pg-Pe) MWt sec sec	130			25°	25ª			980			7.5°0 3350 IO	9100 10	67,600 ^a 0.050
ENERGY CONVERSION Fusion Reaction Plasma Formation & Heating Input Power Auxiliary Plasma Heating Input Power Alpha Heating Power		MWe MWe MWt	D(T, n) ⁴ He Ohmic	D(T, n) ⁴ He	D(T, n) ⁴ He Ohmic	D(T, n) ⁴ He Ohmic	D(T, n) ⁴ He Ohmic	D(T, n) ⁴ He Ohmic	D(T, n) ⁴ He	D(T, n) ⁴ He		D(T, n) ⁴ He Ohmic			D(T, n) ⁴ He Shock & Compression X
Thermal Conversion Blanket Output Power ^C Charged Particle		MWe MWe	x	x		x	x	X X	x	x x		×			x
Direct Conversion Power Plasma - Magnet Field Direct Conversion Power		MWe	Steam: 900°F,								Closed He		64 8		
Power Conversion System Type			850 psi			Steam	Steam				cycle gas turbine				
REACTOR DIMENSIONS Torus Major Radius Vacuum Wall Radius Blanket Outer Radius Magnet Coil Outer Radius Axial Lengthe Overall Dimensions®	R rw rb rm & w;h;l;	m m m m m m	7.27 0.66 ^d 1.28 2.14 165 ^f 3.35; 3.35; 100	7 4.75	5.2 1.86 3.06 3.85	5.5 1.75 3.00 ⁹ 3.50	5.5 1.75 3.00 ⁹ 3.50	5.25 1.75 3.00	7.0	12.70 1.2 ⁰ 2.4 2.6	6.83 2.0 3.7 3.9	3.5° 1.75 3.0	6.5 1.0 1.8 2.1	10 1.75 3.0 3.5	57 0.2
PLASMA PARAMETERS Composition (Initial) In Density (Initial) Particle Confinement Time Confinement Time/Bohm Time Lowson Number Ion Temperature Electron Temperature Stability Margin Plasma Pressure/Magnetic Pressure	n T a nT T _i T _e q	cm ³ sec T/T _B cm ⁻³ sec keV	D-T 1.95(I0 ¹⁵) 0.331 6.46(I0 ¹⁴) ⁰ IO	D-T 120 20 20	D-T 3(I0 ¹⁴) 0.7 370 2.1(I0 ¹⁴) ^a 15 15	D-T 2.8(I0 ¹⁴) 0.6 120 1.7(I0 ¹⁴) 20 20 1.35	D-T 4(IO ¹⁴) 3.5 470 1.4(IO ¹⁵) 13	D-T 4(I014) 1.5 90 6(I014) 20 20 1.3	D-T 1 240 20 20 20 ≥3	D-T 4.9(IO ¹⁴) I 4.9(IO ¹⁴) ^a IO I3.5	D-T	D-T 4(10 ¹⁴) 1.0 270 4(10 ¹⁴) ⁰ 20 20 0.20	D-T 44(IO I4) IO IOOO	D-T 3.5(10 ¹⁴) 10 1000	D-T 1.4(10 ¹⁶) 0.050 5(10 ¹⁴ 10.9
Total Poloidal Toroidal Plasma Current Effective Resistance	β β _p β _t ι	MA $\mu\Omega$	0.24 - 0.75 0.182 207	0.3	0.3	0.075	>0.043	0.02 0.33 28	0.045	0.12		0.375 0.33 28	0.4	0.4 25 3.2	
Poloidal Magnetic Field Major Radius Minor Radius Aspect Ratio Volume Fusion Power Density	Bp R a A = R/a Vp Pf	kG m m liter kWt/liter	1.92(IO ⁵) 88.6	7 1.75 4 4.2(10 ⁵) ^a	11.4 5.2 1.5 3.5 223(10 ³) 22.4	5.50 1.25 4.4 170(10 ³) 29.4	5.50 1.25 4.4 170(10 ³) 29.4	5.25° 1.50 3.5 223(10³)° 27°	7.0 1.75 4 425(10 ³)	12.7 1.0° 12.7° 2.5(10 ⁵) 18.6°	6.83	3.5 ⁰ 1.0 3.5 6.9(10 ⁴) ⁶ 87 ⁰		3) 198(10	57 0.08 ~700 3) 780

TABLE I REACTOR PARAMETERS FOR CLOSED SYSTEMS (Contd.)

			Stellard	itors		Toka	maks				Toro	idal Machines		1 5003	θ-Pinch
			Spitzer		Golovin	Carruther	s <u>et al.</u> 5, 6	Butt ⁸	3	9	Förster &	Butt ⁸	James, News	on, Bodin ^{11,12}	Burnett
			et al.2	Gibson ³	et al.4	a-Heating	Injection	Simple Model	Gibson ³	Mills ⁹	Schneider 10	Simple Model	Resistive b	Supercondb	& Ellis ¹³
GNET SYSTEM															
Plasma Confining Magnet Field Coil							A								I was a second
Class (Material; Oper. Temp, °C)			Cu;80°C		Supercond.	Supercond.	Supercond.	Supercond.		Supercond.	Supercond.	Supercond.	Cu ; 250° C	Supercond.	Cu& Supercon
Toroidal Axial Field (r=0)	Во	kG	Cu; 60°C	100	Supercond.	Supercond.	Supercond.	175	70	65	Supercond.	60			110
Maximum Toroidal Field	Bm	kG		200	100	100	100	110	110	-			1 2 5 7 1	The state of	
				200	100	100	100	1.7	110	The second second			150		1000
Confining Magnetic Field Field in Curved Section at Wall	Вс	kG kG	75		12 2 3	1	1 2 3 7			Provide s	1577 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
Field in Straight Section at Wall		kG	42.4		116- 2 5					1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
			42.4					0.01 to 0.1			1 13 9 75	0.01 to 0.1	0.5	0.5	
Rise Time of Magnetic Field	tr	sec	128		3.06	3.00	3.00	3.0		2.4	3.3	3.0	1.8	3.0	
Inside Rodius	ri	m		4.75				3.0	3.45	2.6	3.8	0.0	2.1	3.5	1
Outside Radius	ro	m	2.14	4.75	3.85	3.50	3.50		3.43	2.0	3.0			0.0	The second
Total Magnetic Power Required	Pm	MW	1300			100000				13. 1				Market .	
Ohmic Heating Transformer Primary						100						A 75 70			
												1 3 3 3 6	IRON	IRON AIR	
Type of Core						1 Theren						1-03-53-53	51	113 133	
Core Area					4 4 5 5 5								0	0 250	12 1 1959
Magnetizing Current	lm	MA											80	o 15.1	
Magnetizing Inductance	Lm	μН											2.34 ^j	3.56 3.56	
Leakage Inductance	Lc	μН			A Committee	1 - 6 - 6							199	444 444	1000
Inductive Flux	QL	Webers												54 54	
Resistive Flux	QR	Webers					1 3 4 4 4 5 1						27 k		k
Pulsed Power Supply Cont. Rat	ting	MW	12 7 12 7 15 15										2100 ^k	7200 ^k 12800	
Secondary (Plasma)			100000000000000000000000000000000000000				1000						10 SX2-50		
Plasma Current	1	MA	0.182			8.7		28				28	17	25 25	
Effective Resistance	Ri	μΩ	207										2.1 ^m	3.2 ^m 3.2 ^m	
Classical Resistance	Rc	nΩ	20.				1					1996	11.9	7.1 7.1	
Inductance		μН	21				1 3 4 4						11.7	17.8 17.8	The state of the s
Poloidal Field	Lp Bp	kG	21		11.4"								56	50 50	
BLANKET SYSTEM	ър	10			1										
Vocuum Wall Loading P	Pw	MW/m ²	27.8	13	13	13	13	16.50 ^a	7.00	6.18	10	25°	13 (Peak)	13 (Peak)	6.09
Divertor Wall Loading	Pd	MW/m ²	0.585 ^q		1										10000
Energy Deposition		MW/m ²				2.50	2.50								
Materials:															18 18 14
Vacuum Wall			The state of the s			Mor	Mor	1		Mo	Nb or TZM				
Coolant			H ₂ O; Li			Li ₂ BeF ₄	Li ₂ BeF ₄			Li ₂ BeF ₄	Helium				Li
Primary Blanket			H-O Li SS			Inor 8, LiH	Inor 8, LiH			24	Li, Graphite, H ₂ O, B				
Moderator - Reflector - Attenuator			H ₂ O, Li, SS H ₂ O, Li, SS		13 19 4 13	H ₂ O, Pb, B	H ₂ O, Pb, B				Li, Graphite, H ₂ O, B			100000	
Gamma Shield			1.20, 2., 00			Pb	Pb	1							
Power Density:							7 95								
		kW/liter	138		102-19	~143	~143								
Vacuum Wall	Pw	kW/liter	136			10.4	10.4								
Coolant	Pc		300°				0.13 (max 39)								
Primary Blanket	Pp	kW/liter	300			0.078	0.078	19/4							
Moderator - Reflector - Attenuator	Pm	kW/liter	18.00												
Gamma Shield	Pg	kW/liter	1 6 18 Carlo		1 15	0.0036	0.0036			1 - 16 6				100000000000000000000000000000000000000	8
Temperatures:			233		THE COLUMN			VE TO THE		1 - 2 - 2 - 1				1000000	11 1
Vacuum Wall	Tw	°C	H ₂ O; Li	4	100 1	1000	1000	12 - 1		-	1000				
Coolant	Tc		350(H ₂ 0); 1000(L	.1)	100 73 6	774 - 834	774 - 834	20		F 196-1		1		The second of	-
Primary Blanket	Тр	°C	100000		1 4 6 6 6 6	834 - 894	834 - 894	Marin San			1 2 2 3 3 3 3 3 3	1000000		1 33	T BARRA
Moderator - Reflector - Attenuator	Tm	°C			100 - 100	324	324	T In single		10-11-11-11-11	100000000000000000000000000000000000000	1-21-22		37.2	079956
Gamma Shield	Tq	°C	12.759		1537.36	324	324			- 3-3	THE PART SA	100000000000000000000000000000000000000		Control of the last	
Total Blanket Thickness	,	m			1.2	1.25	1.25								1 B () ()
Total Shield Thickness		m	133000000000000000000000000000000000000		A Company of the Comp	4	The second	Contract of					THE RESERVE AND ADDRESS OF THE PARTY OF THE	Maria Company	1

		Stel	larators	1977	Tol	kamaks		1.00									
		Spitzer	Gibson ³	Golovin	Carruthe	ers et al. ⁵ , 6	Butt 8	The state of		Tor	oidal Machines		θ-Pinch				
		et al.2	Gibson	et al.4	a-Heating	Injection	Simple Model	Gibson ³	Mills ⁹	Förster & Schneider 10	Butt ⁸		on, Bodin ^{11,12}	Burnett			
PRIMARY COOLANT SYSTEM						,		4 119		Schneider	Simple Model	Resistive b	Supercond ^b	& Ellis 13			
Hydraulic Ph	kg/se Ph psi Ph psi Pem psi MW	c	7.1(lo ⁹)						Li ₂ BeF ₄	Helium 2209 kg/sec							
Electromagnetic	°C °C	290 334			774 894	774 894				518							
Outlet T _{XC} Turbine Outlet T _{to} Compressor Inlet Tci Compressor Outlet Tco Pressure	°C °C	482					70.00			950 553 32							
Reactor Outlet RECT - CONVERSION SYSTEM	Bar									93							
	166	5 500								90							
	keV A MW MW kg/day kg/day kg/day kg/day	Neutral gas and or liquid globule t 81 122 14 2.1 0.0176			12.3 18.5 0.43 0.65 (0.15)1.35 0.035	Heated Plasma 147 ^u < 4.3 < 6.5 0.43 0.65 > 0.10			0.94 1.41 2.82 0.027					Gas Flow			
tellum Production Production Production Production Program Prosuper Prosuper Prosuper Prosuper Prosuper Prosuper Prosuper Propus Production Pumps Production Propus	kg/day kg/day moles/se liters/sec mTorr	0.465 7.95(10 ⁶) 1 265 265 100							3.76 0.2 0.68(IO ⁶) 5					3.032			

aCalculated by us.

DParameters listed for Cycle No. 2 with no reheat.

 $^{\rm C}{\rm Includes}$ neutronic radiation, charged particles, and magnetic field dissipation.

dVacuum wall radius of straight section, r.

 $^{
m e}$ Dimensions pertain to stellarators and nontorus systems.

formal axial length, i.e., straight section and curved sections.

gBased on Homeyer's blanket design. 7

hCompositions: 50% D, 50% T (or as indicated).

 † Calculated, using q = 1 and aspect ratio A = 3.5.

 j Calculated, using $L_{C}/L_{D} = 0.2$.

kObtained from Fig. 5 of Ref. 12.

kObtained from Fig. 5 of Ref. 12.

 $^{1}\rm{Ohmic}$ heating of plasma to 10^{6} $^{\rm{o}}\rm{K}$, with magnetic pumping to final temperature, 10^{8} $^{\rm{o}}\rm{K}$ (Ref. 15).

"Calculated from q = B_T/AB_p.

^mRequired effective plasma resistance during plasma-current rise time.

 $P_{\rm Vacuum\ wall}$ loading $P_{\rm w}$, defined as $P_{\rm f}/{\rm vacuum}$ -tube surface area.

 \boldsymbol{q}_{Actual} heat load on divertor wall from bremsstrahlung radiation and charged particle impact.

 r Blanket design of Homeyer 7 and Impink. 14

SNear blanket inner radius where power density peaks, total heat generation in coolant (water) flowing through pipes.

 $^{\rm t}$ Injection systems were proposed, with recommendation that experiments be performed to study these systems. UBased on 7% efficiency of thermal power at 42% station efficiency.

wall loading of $P_W = 13 \text{ MW/m}^2$ from the engineering review papers of Carruthers <u>et al.</u>^{5,6} The results for a 5000-MWt reactor are presented in Table I. This very large size is considered by Golovin <u>et al.</u> to be the smallest economically feasible size for tokamak systems.

Golovin et al. also include parameters for two intermediate experimental units, which they consider as necessary steps before the industrial-scale 5000-MWt unit can be completely designed. These are not included in the present survey. The first of these facilities is a small 50-MWt laboratory unit with a wall thermal loading of 1.3 MW/m². This unit does not include a blanket, and magnetic fields are generated with uncooled copper coils next to the vacuum wall. The maximum toroidal magnetic field of 60 kG is anticipated for this design.

The intermediate or "final" laboratory unit suggested has a power rating of 1500 MWt, and a vacuum wall thermal loading of 13 MW/m² as assumed for the industrial unit. A superconducting coil system generating a maximum field of 100 kG replaces the copper coils. The facility is designed without a tritium breeding blanket and without shielding of the coil system from neutron and gamma radiation.

2. Carruthers et al. 5,6 have surveyed the major systems of plasma confinement and examined the engineering problems and costs of a powergenerating fusion reactor. The model chosen for the analysis is a steady-state toroidal geometry system containing a plasma of 50% deuterium and 50% tritium. The design parameters are listed in Table I for two different plasma heating techniques: charged-particle heating and injection of heated plasma. The two systems are tabulated under the tokamak-type reactors because of the low β 's, 0.075 and 0.43, usually associated with tokamaks. The table lists an assumed gross electrical output efficiency of 0.46 for the injection-heated reactor. It is not clear whether the 7% circulating power for injection heating used in the study includes the efficiency of thermal conversion.

Their study compares the plasma parameters for a charged-particle-heated D-D reactor with the D-T system. The D-D reactor uses a sodium-blanket system.

3. Butt⁸ presents the results of feasibility studies of pulsed toroidal reactors. The technological problems associated with these systems is not discussed, but the plasma parameters required for the different variants of the pulsed reactors are explored using currently accepted technical parameters. Butt points out that although the margins of stability, q, for tokamak and zeta-type reactors differ widely, the experiments in tokamak T-3 and zeta have given indications of good confinement. Therefore, the object of the study was to assess the feasibility of each type by using model plasma configurations that approximate as closely as possible

the available experimental results. The preliminary reactor parameters from the simple-model approach are presented in Table I for a tokamak reactor. The simple-model approximation assumes that the plasma pressure and current density are constant out to the plasma radius that is less than the radius of the vacuum wall. The parameters for a zeta-type reactor are listed under Toroidal Machines.

A comparison is also made for tokamak-reactor parameters using other distributions for pressure and density. The comparison shows that for a given q = 1.3, the more complex the model, the less feasible becomes the tokamak as a reactor, because of the required high axial magnetic fields. Butt's study includes a comparison of the simple model and experimental results for the zeta-type reactor.

4. The two representative tokamak systems selected by Gibson et al. 3 are units having a total power output of 4200 and 1650 MWe. The parameters associated with the 1650 MWe system are included in Table I. Significant parameters for this unit are: β = 0.045, B = 110 kG, and $P_{\rm W}$ = 7 MW/m². By way of comparison, the 4200-MWe unit involves an average β = 0.005, B = 430 kG, and $P_{\rm W}$ = 22 MW/m².

C. Toroidal Machines

- 1. Mills⁹ considers the major features of a thermonuclear reactor: the plasma, vacuum field, diverter, vacuum wall, coolant, blanket, and coils. Plasma conditions and processes are discussed in some detail. The other design areas of importance listed above have their associated problems outlined, but are not covered in the same detail as the plasma. The economics are covered in sufficient depth to allow a broad cost estimate of a certain model with a tabular presentation of capital costs. Power costs of the fusion power plant are compared with the Oyster Creek coal and nuclear plants.
- 2. Förster and Schneider 10 emphasized the engineering and economic aspects of a toroidal fusion-reactor power plant, with special emphasis on the energy-conversion system. Plasma characteristics are almost totally ignored. Helium is chosen as the reactor coolant, and a closed-cycle gas turbine is used for the heat sink. The torus is designed to have eight removable segments, and consideration is given to two torus configurations. Calculations for the reactor heat exchanger and cycle components are performed for several thermodynamic and design parameters to evaluate optimum plant-layout requirements. Two cycles, with and without reheat, are considered. The cycle without reheat is studied for three cases of reactor pressure drop. The design of the torus with respect to construction (removable segments), materials, and heat-removal requirements is presented. Numerical information is presented on the choice of cycle and reactor cooling-tube diameter. For the plant considered, rough

cost estimates are made. Table I lists only the parameters for the case of intermediate reactor pressure drop without reheat.

3. In a comparison study, Bodin et al. 11 investigate a reactor design based on a high-\$\beta\$ toroidal pinch in which the plasma is confined by combining axial and azimuthal magnetic fields. The azimuthal magnetic field is produced by a current flowing in the plasma around the major axis of the torus. Because the axial current must be induced by transformer action, the system is necessarily pulsed. Two possible pulsed operating modes are examined. One is the purely pulsed system without refueling during the pulse, where the pulse length approximates the burnup time (less than 10 sec). The other mode is the quasi-steady system with refueling during the pulse, whose duration can be many tens of seconds or more. The plasma parameters and dimensions developed in their study are based on a wall thermal loading, blanket thickness, and Lawson curves cited by Carruthers et al. 5 Bodin et al. also discuss the technological problems of the proposed operating cycle, temperature control, choice of wall material, and magnetic penetration of the blanket and vacuum wall.

In a concurrent study, 12 the above authors examine some design problems related to the field system and power-supply requirements of pulsed, closed-system fusion reactors. Large axial plasma currents must be induced in these systems in order to provide plasma heating and a portion of the confining magnetic field. The authors consider both superconducting and resistive windings and conclude that both systems appear to be feasible. Table I includes the preliminary design parameters for both of these systems.

D. Toroidal θ -pinch (Scyllac)

1. The toroidal-separated shock θ -pinch reactor design by Burnett and Ellis 13 accomplishes plasma heating in two stages using two energy-storage systems. In the first stage, the plasma ions are shockheated to several keV; in the second stage, the plasma is raised to its final temperature by adiabatic compression. The shock-heating coil is driven by high-voltage circuits whose energy content is only a few percent of that of the total system. The multiturn copper compression coil operates near room temperature, and Burnett and Ellis estimate that the joule losses can be made up by direct energy conversion from the expansion of the high- β plasma against the magnetic field during the burning pulse. Magnetic energy is switched reversibly into the compression coil from a cryogenic magnetic store situated outside the reactor core. Burnett and Ellis propose that fueling and flushing of the plasma between burning pulses be accomplished by flowing D-T gas through the discharge chamber.

V. REACTOR PARAMETERS FOR OPEN-ENDED SYSTEMS: TABLE II

A. Mirror Machines

1. Post's early pioneering work' is based on thermal conversion only. Operating conditions are determined by stable zones in β -vs- B_0 parameter space bounded by a set of critical conditions, namely the "slow" Alfvén instability, the transverse instability, and threshold power-loss conditions for the mirror magnet-coil system. This study is omitted here.

Post's more recent work¹⁷ includes three different fuel cycles with energy-conversion systems (direct and thermal) appropriate to each. The study includes the novel concept of circulating the directly converted energy of the escaping particles with high efficiency. The first fuel cycle is an optimized 60-40 D-T cycle, which has a blanket breeding ratio of 0.86 and which exploits neutron-multiplying reactions and energy-multiplying neutron-capture reactions in a Be-Na-6Li-Nb blanket to achieve a substantial net power output. The second is a D-D cycle with 12% tritium reinjected from the D-D reaction and nonbreeding energy-multiplying, neutron-capture reactions in the Be-Na-Nb blanket. The third is an 80-20 D-3He cycle with reinjected ³He, direct conversion, and thermal conversion in a nonbreeding blanket.

2. The mirror-reactor design studies described by Werner et al. 18 use the concept of direct conversion of charged-particle energy into electrical power. The systems considered include Yin-Yang and axially symmetric coil configurations, with D-T and D-3He fuel cycles. Direct conversion is proposed to optimize the power balance in mirror systems and to gain overall high plant efficiencies. Parametric curves are developed for an economic comparison for a variety of operating power levels, fuel cycles, and magnet systems. Werner et al. find that the D-T system with direct conversion has an economic advantage over the D-3He system. However, the overall system efficiencies for D-3He fueled reactors are potentially much greater than the efficiencies of reactors designed for D-T fuel cycles.

Detailed engineering and economic parameters are developed for the D- 3 He system, and these are listed in Table II. The magnet-system parameters are obtained from the study of Moir and Taylor. 19

3. The Fraas²⁰ design is strongly engineering-oriented and is based on plasma parameters from Rose.²¹ This design exploits the high-temperature capability of fusion reactors by using a potassium-steam binary vapor cycle with an inlet temperature of 1000°C to the potassium turbine. Refrigeration power requirements for the superconducting magnet system are taken from a recent estimate by Fraas.²² Much consideration is given to hazards and the broader aspects of energy requirements of the

TABLE II REACTOR PARAMETERS FOR OPEN-ENDED SYSTEMS

								Mirrors						Ast	ron	θ-Pinch	Continuous Flow Pinch	Long Cusp
				Post ¹⁶		Werner et al ¹⁸ Moir & Taylor	Fraas ²⁰ Rose ²¹	Sweetman ²⁵	Cordey	et al. ²⁶	Carruthers ²⁷	Werner ²⁸	Golovin et al. ²⁹	Christofilos 30	Werner et al.31	Bell et al.32	Newton ³³	Spalding ³⁴
Reactor Output Power Gross Electrical Power Net Electrical Power Station Efficiency Fractional Circulating Power Q1 = Reactor Output Power Circulating Power	P MW Pg MW Pe MW ηs = Pe/P ϵ = (Pg - Pe Q¹ = P/(Pg - Pe	e	0.62	0.72	0.70	5047 4704 1000 0.20 0.79	5000 2800	2635 ^a 1813 ^a 730 ^a 0.28 ^a 0.60 ^a 2.43 ^a	2964 ^a 1960 1000 0.34 ^a 0.50 ^a	9470 ^a 8460 1000 0.11 ^a 0.88 ^a	1430° 570° 355° 0.25° 0.38° 6.67°	10000 5000	≤960 ^d 200	11200 6950 ⁰ 5600 0.50 0.19	12000	61800 ^d 26400 ^d 5000 0.08 ^d 0.81 ^d 2.89 ^d 666(10 ³)	10000 ~4000	75000° 25000 16300° 0.22° 0.35° 8.6 1200(10°3)
Fusion Pulse Power Pulse Width Pulse Period	Pp MW tw sec tp sec															0.025 0.44		0.1
NERGY CONVERSION Fusion Reaction Type Plasma Formation & Heating Inpu Auxiliary Plasma Heating Alpha Particle Heating Power Thermal Conversion Output Pow Charged Particle Direct Conversi Plasma— Magnetic Field Independence Power Conversion System Type	MW MV er ^c MV on Power MV	le It Ve	D(T,n) ⁴ He X X	D(D,n) ³ He X X	D(³ He,p) ⁴ He Х Х	D(³ He,p) ⁴ He 3505 O O 188 ⁿ	D(T,n) ⁴ He 2800 Potossium, Steam	D(T,n) ⁴ He 975 ^a 697 ^a 1116 ^a Direct, Steom ^d	D(T,n) ⁴ He 873 880 1080	D(³ He,p) ⁴ He 6700 70 8390	D(T,n) ⁴ He 215 570 ^a Steam ^d	D(T,n) ⁴ He 5000 Potassium, Steam	D (T,n) ⁴ He	D(T,n) ⁴ He 1000 0 1500 5600 1350 Direct, Steam	D(T,n) ⁴ He	D(T,n) ⁴ He 21,400 ^a 23,600 ^a 2800 Steam ^d	D(T,n) ⁴ He	D(T,n) ⁴ H
REACTOR DIMENSIONS Vacuum Wall Length Vacuum Wall Radius Blanket Length Blanket Outside Radius Magnetic Coil Length Magnetic Coil Custade Radius	£w m rw m £b m rb m £m m		1 ^d		No Blanket	3.9	20 2.5-50 ~25 7.1 ~20 ^d 7.4	10 2	22.5 3.96	49.3 8.7	~10 1.75 ~3.0 ^d 3.50	25 2.2 ^e 25 4.2	7 d		11.2 2.8° 13.2 5.5 22.7 ~6.5	376 0.20 ~376 1.63 ~376 0.23	100	~2900 0.6 ~2900 ~1.75 ~2900 ~2.5d
PLASMA PARAMETERS Composition (Initial) b Ion Density (Initial) Particle Confinement Time Confinement Time / Bohm Time Lawson Number Ion Temperature Electron Temperature	n cn T se α n T, cm ⁻³ T _i ke Te ke	sec V	0.6D-0.4T	0.88D-0.12T	0.8 D - 0.2 ³ He ^l 400 50	D- ³ He I.23(IO ¹⁴) 480	D-T I. 75(10 ¹⁴) I34 I5	D-T 2.1(10 ¹⁴) 0.13 2.7 (10 ¹³) ^a 150	D-T 1.4 (10 ¹⁴)	0.8D-0.2 ³ He 10 ¹⁴	D-T 3.6 (10 ¹⁴) ^a 0.58 ~ 90 2.1(10 ¹⁴)	D-T ≤10 ¹⁵	D-T 2.5 (10 ¹⁴) ~100	D-T 2.1 (10 ¹⁵) 0.072 130 1.5 (10 ¹⁴) 20 20	D-T 1015	D-T 2.4 (1016) 0.025 6.1 (10 ¹⁴) 10	D-T 1017 ^f 0.001 1(10 ¹⁴) 10	D-T ~10 ¹⁶ 0.096 1(10 ¹⁵)
B (Plasma Pressure/ Magnetic Pressure) Length Radius Volume Fusion Power Density	β Ip m o m Vp lift Pf Mo	er W/liter	1			0.8 2.9 ⁰	0.38 20 ~4 ^d 980,000 ^a 0.005 ^a	0.3 - 0.4 10 1.41 ^a 62,800 ^a 0.27	0.83 22.5 2.8 0.16	0.78 49.3 6.16	0.04	25 1.15 100,000° 0.1	0.64 7 0.8 14,100° 0.0425°	0.35 2.5 1.24 12,000 ^a 0.625 ^a	5.0 1.75	1 376 0.01 11,800 3.42	100 0.01 3140 3.18	2900 0.01 90,000 0.83 ⁰
MAGNET SYSTEM Closs (Moterial, Operating Tempers Central Axial Field Mirror Field Mirror Rotto Inside Rodius of Coil- Cryostot Assembly Outside Rodius of Coil- Cryostot Assembly Length of Coil- Cryostot Assembly Coil Power Dissipotion Refrigeration Power	rci m rco m Pc MV Pr MV	v	15° 50 3.3 2	33	3.3	Supercond. 70.4 140.4 2.4 3.9	7.1 7.4 ~20 ~1.0 ^{0, p}	52 200 5	160 6.6 ⁰	180 3.8 ⁰	~3.0 3.5	60 4.2 25	21-35° 105 3-5	100	70 84 1.2 5.5 ~6.5 ^d 22.7 0.015 ^l	141	300	Supercond. 100 600 6 ~1.75 ~2.5 ~2900

					-	-	-	Mirrors	100					Astron		θ-Pinch	Continuous Flow Pinch	Long Cusp
			Post ¹⁶			Werner et al ¹⁸ Moir & Taylor	Freas ²⁰ Rose ²¹	Sweetman ²⁵	Cordey	<u>d al</u> .26	Carruthers ²⁷	Werner ²⁸	Golovin et al. ²⁹	Christofilos 30	Werner et al.31	Bell et al.32	Newton ³³	Spalding ³⁴
Coolant Primary Blanket Moderator-Reflector-Attenuator Gamma Shield Temperature: Vacuum Wall Coolant Primary Blanket Moderator-Reflector-Attenuator Gamma Shield	Pw MW Pv kW.Pc kW/Pp kW/Pp kW/Pp kW/Pp kW/Tc °C Tp °C Tp °C Tm °C Tg °C Tg °C	liter liter liter liter	No, Li No, Nb, Be, B No, Nb, Be, B	Niobium No No, Nb, Be, B No, Nb, Be, B	NO BLANKET		Niobium Lithium Lithium Graphite Borated H ₂ O, Lead	13			13	30 Niobium, S.S. .95 Li, .05 Nb .95 Li, .05 Nb .95 Li, .05 Nb .3000 ⁶	13	Nb ⁶ Li Li, Nb Li, No, Be, Nb H ₂ O, Pb	81 91. 689 Nb6* Li, Nb, Bi, Nb HgO, Pb	Zr, Cu He, Li Li, TZM, Zr ~540 ~360	0.13	0.055 ^m Molybdenum Li ₂ BeF ₄ Li ₂ BeF ₄ Li ₂ BeF ₄ Li ₂ BeF ₄ H ₂ O, Pb
Total Blanket Thickness Total Shield Thickness Breeding Ratio	m m		0.86	0	0		1.02 .97						1.2		175 10 10	1.40		1.13
Pressure Drop	O kg/s ΔPh psi Pp MW	ec .					Lithium IOOO IOSO					Lithium 3210 50 12.5 725 875 725			Lithium ⁹ 11700 32.6 3.3 ~725 ^d ~925 ^d	Helium 86.3 2150		Li ₂ Be F ₄ ~500 ~600
Expander Height h Collector Outer Radius C Collector Height C Expander - Collector Magnetic Field 6 Efficiency C Output Power P	e m he m ho m h m he kG	CI	hgd Particles 100 1 ~150 0.5 0.5 0.9 ~150 ^d	Chgd.Particles	ChgdParticles	70 0.96 4218	None	Chgd Particles	0.9	0.9 8390	None	825 None	ChgdParticles 50 - IOO	ChgdParticles 0.90 1350	None	Magnetic Fiel Interaction		None
Injector Beam Current II Injector Beam Power to Plasma II Injector Input Power Fuel Input Fuel Consumption Total Consumption Tractional Burnup Flow Compression Ratio Plasma Flow Speed/Thermal Speed	P ₁ MWe P ₁ MWe P ₂ kg/do	y y y				480 3.5° 1680 1765		100 9.75° 975° 1085°	100 8.73 873 970	500 13.4 6700 74.44			Injection 100 3.6 360°	Pellets 4(10 6) h 0.25(10 ⁻³) h 1000 h 1350 h	900		>10 ⁴	Gas Fee
Plasma Current I Plasma Potential V V V V V V V V V V V V V V V V V V V	p kV	y y /sec															1500	

TABLE II REACTOR PARAMETERS FOR OPEN-ENDED SYSTEMS (Contd.)

FOOTNOTES

^aCalculated by us.

bComposition: 50% D, 50% T (or as indicated).

^CIncludes neutrons, radiation, charged particles, and magnetic field dissipation.

dinferred by us.

 $^{\rm e}$ Blanket inner wall; vacuum-wall outside blanket. $^{\rm f}$ Initial (noncompressed) density = $10^{13}~{\rm cm}^{-3}$.

⁹Case 3, Table VII, Ref. 31.

hParameters for proton E-layer beam.

Neutron flux heat deposition only.

jInsulated ducts assumed.

k₃He reinjected (no external source).

Quadrupole magnetic well (Yin-Yang coils).

Time average.

 $^{\rm n}{\rm Does}$ not include 298 MHe converted from direct-conversion system losses.

OFor vacuum fields.

PSee Ref. 22.

future, including urban siting. The afterheat power has recently been considered anew by Dudziak²³ and Steiner,²⁴ who show that it is about 7% of the rated fusion power of the reactor, approximately 10⁴ times the original estimate in Ref. 20.

- 4. Sweetman²⁵ emphasizes the power handled by the various components of a mirror system as a function of their respective efficiencies and shows that a major limitation on such systems is the large circulating power required for injection because of fast classical scattering into the loss cones. Two principal ways of reducing this circulating power are considered, namely, high efficiency of the total injection system (including direct conversion) and mirror ratios as large as ~5. The latter involves increasing β to ~0.5 without introducing unmanageable instabilities, maintaining adiabaticity of the confined particles, keeping radial electric fields within stability limits in both simple mirror and minimum-B systems, and staying within economic limitations. The major assumptions for the reactor design are β ≈ 0.4, mirror ratio ≈ 5, and mirror field = 200 kG.
- 5. Cordey et al. 26 study the economics of mirror reactors with respect to the mirror ratio, mirror magnetic fields, injection energies, and highly efficient circulating-power systems. The basic system incorporates $Post^{1}s^{17}$ technique of direct conversion of the escaping charged particles. The parameter studies include minimum-B and simple mirror systems for both D-T and $D^{-3}He$ fuel cycles. For the current survey, Table II lists the power parameters for only two of the mirror systems. Cordey et al. conclude that economic factors are affected by the mirror ratio, the value of β_{max} , and the value of Q. The costs are found to be less sensitive to the maximum mirror field and the assumed maximum wall loading.
- 6. The Carruthers²⁷ design appears to have been developed mainly to establish overall size of an open-ended reactor and illustrate the magnitude of some of the more serious technological problems such as the establishment of the plasma, the injection of fuel, the extraction of ash and unburnt fuel, and the effects of interactions between the plasma and the vacuum wall. The values in the power section of the tables for this design are based on 10-m length, 1.75-m vacuum-wall radius, 13-MW/m² wallflux loading, 40% thermal efficiency, and 15% fusion power required for plasma heating, all as given by Carruthers.
- 7. Werner 28 introduces a novel blanket design in which modular arrays of radially acting heat pipes are placed nearest the plasma, followed by a modular blanket structure surrounded outside by the vacuum wall. Consequently, the fluxes of radiant energy and charged particles are absorbed and the neutron flux is highly attenuated before reaching the vacuum wall, thereby greatly reducing the operating temperature of the latter. This design allows the wall loading on the inner-heat-pipe surface of the blanket to be taken as 30 MW/m², more than twice that of any other design.

8. Golovin's 29 design of a mirror fusion reactor is carried out as a comparative study with a tokamak reactor. The need for such a comparison was motivated by the undesirable aspects of the large minimum size established earlier by Golovin et al. 4 for tokamaks (output power $\gtrsim 5000$ MWt) and the desirable aspects of a potentially smaller minimum size (output power = 600 MWt in this case) for mirror reactors using direct conversion. Meaningful comparability of the two designs is established by using the same maximum magnetic field (100 kG), the same neutron-moderating blanket thickness (120 cm), and comparable plasma densities (2.5-3.0 x 10¹⁴ cm⁻³) in both cases. The major differences are in the plasma confinement times ($\tau_{\rm mirror} \approx 0.1 \ \tau_{\rm tokamak}$) and plasma temperatures ($\tau_{\rm mirror} \approx 10 \ T_{\rm tokamak}$). Assumptions made for the mirror plasma are that microinstabilities can be suppressed with feedback stabilization and that static multipole potential-well stabilization is not necessary. No detailed account of the power-balance parameters is given.

B. Astron

- 1. Christofilos³⁰ considers an astron with an E layer maintained by relativistic protons having 4 GeV energy (3 rest-mass units). Direct conversion is used to handle the loss-cone energy flux from the ends of the reactor, and this power (1350 MWe) is used to operate an electron-ring accelerator which provides the relativistic proton beam.
- 2. Werner et al. 31 apply the heat-pipe, first-wall concept to the astron. From consideration of blanket neutronics and heat pipe thermal dynamics, their parameters lead to a large first-wall power loading, 68 MW/m^2 . (Our calculation is based on their model, p. 459 of Ref. 31.) However, the thickness of the heat-pipe first wall is only 0.01 cm, and although this is not the vacuum wall per se, nevertheless it is subject to the surface-effect damage from plasma radiation common to all vacuum walls.

C. Linear θ-pinch (Scylla)

1. Bell, Borkenhagen, and Ribe³² treat four cases of energy balance and two cases of net power production in $\beta=1$ θ -pinch reactors. The major independent variables in these cases are coil size (10-, 15- and 20-cm radii) and coolants (helium and steam). The case chosen here is for a helium-cooled net power producer having a 20-cm coil radius. Special attention is given to the engineering design of the gas-cooling system, and a study is made of different coil and support structures and their effect on the tritium breeding ratio of the blanket. For those parameters in Table II that we calculated, the model used is consistent with the power-flow diagram in Ref. 1, in which the direct-conversion power is included in the gross electrical output power.

- 2. Of all the various fusion-reactor concepts treated here, the one that represents the greatest extrapolation from experimental results achieved to date appears to be the continuous-flow linear pinch as described by Newton. Nevertheless, the concept itself has several important advantages over the more conventional closed or open-ended systems; hence the scoping-type assessment of design parameters is a significant contribution to the present survey.
- 3. Spalding³⁴ considers variations of the basic cusp configuration including the conventional spindle cusp, a long θ -pinch with cusp ends ("long cusp"), and a symmetric hybrid θ -pinch cusp. He shows that in all cases it is necessary to use a pulsed high-beta plasma. The long-cusp example included in the current survey is the version that emerges from Spalding's study as having parameters that most nearly seem to be within reach of foreseeable technology.

VI. REMARKS

The parameters in Tables I and II are presented in such a manner as to compare reactor types and identify major subsystems, some of which have as yet received only minimum attention. A cursory review of the tabulation reveals that the preliminary nature of the studies and the diversity of approaches have yielded (understandably) design conditions that, in some instances, appear to be currently unattainable. Therefore, one of the immediate needs in fusion-reactor technology is to reconcile some of the more severely conflicting design requirements and to bring interface problems into better perspective.

For example, the blanket parameters are not determined specifically for many of the reactor systems listed. The limited mechanical-design effort in the structural requirements of the blanket and superconducting-magnet system has not allowed realistic estimates on the content of structural material to be determined at this time. This will have consequences affecting the tritium breeding ratio for the $D(T,n)^4 {\rm He}$ fuel-cycle systems. A second example is the thermal loading and operating temperatures of the vacuum wall. In most of the studies, the values are adapted from Homeyer's estimate of $13~{\rm MW/m^2}$ and have not been analyzed specifically for each design. Therefore, it is not clear that these design conditions are consistent with the constraints imposed by other subsystem requirements and structural integrity.

The limited data generated in the studies thus far reported would make an evaluation of the systems and/or subsystems premature at this time. The compilation is intended to provide background material for a subsequent phase of developing a coordinated overall reactor systems-design study. Through this coordinated effort, consistent interrelationships between power balance and design constraints will be established and can lead to a more meaningful appraisal of the different thermonuclear power reactors.

It is planned to periodically update this survey to reflect the advances being made in total systems design.

REFERENCES

- P. J. Persiani, W. C. Lipinski, and A. J. Hatch, "Power-Balance Parameters Q and ε as Measures of Performance for Fusion Power Reactors," Proc. Texas Symposium on the Technology of Controlled Thermonuclear Fusion Experiments and the Engineering Aspects of Fusion Reactors, November 20-22, 1972, Austin, Texas. See also Some Comments on the Power-balance Parameters Q and ε as Measures of Performance for Fusion Power Reactors, ANL-7932 (June 1972).
- L. Spitzer, Jr., D. J. Grove, W. E. Johnson, L. Tonks, and
 W. F. Westendorp, Problems of the Stellarator as a Useful Power Source,
 NY0-6047 (1954).
- 3. A. Gibson, "Permissible Parameters for Economic Stellarator and Tokamak Reactors," Proc. Conf. Nuclear Fusion Reactors, UKAEA, British Nucl. Energy Soc., p. 233 (Sept 1969). See also: A. Gibson, R. Hancox, and R. J. Bickerton, "On the Feasibility of Stellarator and Tokamak Fusion Reactors," Proc. IAEA 4th Conf. Plasma Physics and Controlled Nuclear Fusion Research, Madison, Wisconsin, June 17-23, 1971, Vol. III, Paper No. IAEA/CN-28/K-4, p. 375.
- I. N. Golovin, Yu. N. Dnestrovsky, and D. P. Kostomarov, "Tokamak as a Possible Fusion Reactor--Comparison with other CTR Devices," Proc. Conf. Nuclear Fusion Reactors, UKAEA, British Nucl. Energy Soc. (Sept 1969), p. 194.
- R. Carruthers, P. A. Davenport, and J. T. D. Mitchell, The Economic Generation of Power from Thermonuclear Fusion, CLM-R-85 (1967).
- 6. R. Carruthers, "Engineering Parameters of a Fusion Reactor," Ibid. Ref. 4, p. 337.
- 7. W. G. Homeyer, Thermal and Chemical Aspects of the Thermonuclear Blanket Problem, MIT Res. Lab. Electron. TR-435 (1965).
- E. P. Butt, "Feasibility Studies of Pulsed Toroidal Reactors," Ibid. Ref. 4. p. 268.
- R. G. Mills, "Some Engineering Problems of Thermonuclear Reactors," Nucl, Fusion 7(4), 223 (1967).
- S. Förster and K. U. Schneider, "Design Possibilities and Consequences for the Conventional Parts of Fusion Power Plants," Proc. 6th Symp. Fusion Technol., Aachen, Germany, Sept 22-25, 1970, p. 445.
- 11. H. A. B. Bodin, T. E. James, and A. A. Newton, "A Pulsed Reactor Based on the Toroidal Pinch," Ibid. Ref. 4, p. 255.
- 12. T. E. James, A. A. Newton, and H. A. B. Bodin, "Some Design Aspects of the Field System and Associated Power Supply of Pulsed Toroidal Fusion Reactors," Ibid. Ref. 4, p. 282.
- 13. S. C. Burnett and W. R. Ellis, Radiation and Wall Flux Calculations for a Theta-Pinch Scientific Feasibility Experiment and a Prototype Reactor, LA-4814 (Dec 1971).
- 14. A. J. Impink, Neutron Economy in Fusion Reactor Blanket Assemblies, MIT Res. Lab. Electron. TR-434 (1965).

- 15. J. M. Berger, W. A. Newcomb, J. M. Dawson, E. A. Frieman, R. M. Kulsrud, and A. Lenard, "Heating of a Confined Plasma by Oscillating Electromagnetic Fields," Proc. 1958 Geneva Conference, Vol. 31, p. 112.
- R. F. Post, "Critical Conditions for Self-Sustaining Reactions in Mirror Machines," Nuclear Fusion: 1962 Supplement--Part 1, p. 99.
- 17. R. F. Post, "Mirror Systems: Fuel Cycles, Loss Reduction and Energy Recovery," Ibid. Ref. 4, p. 88.
- 18. R. W. Werner, G. A. Carlson, J. D. Lee, R. W. Moir, R. F. Post, and C. E. Taylor, "Engineering and Economic Aspects of Mirror Machine Reactors with Direct Conversion," Proc. IAEA 4th Conf. Plasma Physics and Controlled Nuclear Fusion Research, Madison, Wisconsin, June 17-23, 1971, Vol. III, Paper No. IAEA/CN-28/K-2, p. 329.
- 19. R. W. Moir and C. E. Taylor, "Magnets for Open-Ended Fusion Reactors," Proc. 5th Intersociety Energy Conversion Engineering Conf., Las Vegas, Nevada, p. 1-80 (Sept 1970).
- 20. A. P. Fraas, "Conceptual Design of a Fusion Power Plant to Meet the Total Energy Requirements of an Urban Complex," Ibid, Ref. 4, p. 1.
- 21. D. J. Rose, On the Feasibility of Power by Nuclear Fusion, ORNL-TM-2204, pp. 103, A-11, A-20 (1968).
- 22. A. P. Fraas, Cryogenic Systems for the Superconducting Magnets of a Full-Scale Thermonuclear Power Plant, ORNL-TM-3097 (Dec 1970).
- D. J. Dudziak, "A Technical Note on D-T Fusion Reactor Afterheat," Nucl. Technol. 10(3), 391-392 (Mar 1971).
- 24. D. Steiner, "A Review of the ORNL Fusion Feasibility Studies," Ibid. Ref. 19_{\circ} p. 29.
- 25. D. R. Sweetman, "Mirror Reactors: Some General Considerations," Ibid. Ref. 4, p. 112.
- 26. J. G. Cordey, F. B. Marcus, D. R. Sweetman, and E. J. H. Watson, "Efficient Recirculation of Power in Mirror Reactors," Ibid. Ref. 18, Paper No. IAEA/CN-28/K-3, p. 353.
- 27. R. Carruthers, "Engineering Parameters of a Fusion Reactor," Ibid. Ref. 4, p. 337.
- R. W. Werner, "Module Approach to Blanket Design--A Vacuum Wall Free Blanket Using Heat Pipes," Ibid. Ref. 4, p. 536.
- I. N. Golovin, "Mirror Reactor Feasibility Comparison with Tokamak Reactor," Ibid. Ref. 19, p. 1-1.
- N. C. Christofilos, "Astron Plasma Parameters Confined in the Closed Magnetic Well of a Proton E-Layer," Ibid. Ref. 4, p. 173.
- R. W. Werner, B. Meyer, P. B. Mohr, and J. D. Lee, "Preliminary Design Considerations for an Astron Power Reactor System," Ibid. Ref. 4,
- 32. G. I. Bell, W. H. Borkenhagen, and F. L. Ribe, "Feasibility Studies of Pulsed, High- β Fusion Reactors," Ibid. Ref. 4, p. 242.

- 33. A. A. Newton, "Fusion Reactors and Plasma Flow," Ibid. Ref. 4, p. 182.
- 34. I. J. Spalding, Cusp Containment and Thermonuclear Reactors, Nucl. Fusion 8(3), 161 (1968).

